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Abstract

A rod theory is developed for long waves in an elastic circular cylinder with cylindrical anisotropy. Detailed results
for flexural waves and cylindrical orthotropy are given. The theory uses the method of Frobenius in the radial direction
so that the equation of motion is satisfied exactly. Then, the equations arising from the lateral boundary condition are
truncated properly, leading to a rod theory.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Cylindrical orthotropy; Elastic waves; Method of Frobenius

1. Introduction

Classical beam theory says that the time-harmonic flexural vibrations of a bar are governed by

& <Eldzw) — oAy = 0, (1)

d2 \" dz2
where Y/(z) is the transverse displacement at position z along the bar, EI is the flexural rigidity, ¢ is the den-
sity, A(z) is the cross-sectional area at z, and w is the circular frequency. Derivations of (1) can be found in
many textbooks on mechanical vibrations, for example, (Timoshenko, 1928, Section 40) or (Ginsberg,
2001, Section 7.1), see also (Rayleigh, 1945, Section187).

For cylindrical bars, we can seek solutions proportional to ¢, and then (1) gives gdw* = EIk*. In
particular, for cylinders with circular cross-sections of radius a, we obtain
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o(wa)’ = ;E(ka)’, )

where E = u(3/ + 2u)/(A + p) is Young’s modulus, and A and p are the Lamé moduli. Eq. (2) is a dispersion
relation. It predicts that flexural waves travel with speed ¢, where ¢y = 1ka(E/ o).

The calculations above raise a number of questions. When is the equation of motion, (1), justified? Eq.
(1) is a one-dimensional approximation to the exact three-dimensional equations of motion; can this
approximation be refined? Is the dispersion relation (2) correct? Can similar results be obtained for aniso-
tropic bars?

Extensions of (1) to anisotropic cylinders were obtained by Voigt, Goens (1932) and others, and re-
viewed by Hearmon (1946). Thus, for a circular cylinder, Goens (1932) used the following system of
equations,

1 : 1
ZazEAl//w o szl,b 4 ZaZVAEA@W _ 0’ (3)
MA@' + QCUZ@ + 8A,“A‘//W =0, 4)

where O(z) is the angle of twist at z, and E4, y4, 4 and ¢4 are given in terms of the elastic compliances;
E,=E, uys=pand y4 = ¢4 = 0 for isotropic solids. If we look for solutions in the form ¥ =, ¢ and
0 = 0,¢'*, we obtain a quadratic equation for  as a function of k; one solution gives a pseudo-torsional
wave and the other gives a pseudo-flexural wave; the latter satisfies o(wa)® = 1E, (ka)* (1 + e47,) + O((ka)®)
as ka — 0, which agrees with (2) for isotropic solids. More generally, for orthotropic materials with sym-
metry planes aligned with the Cartesian xy, yz and zx planes, y, = ¢, =0 and E, = E3, which is Young’s
modulus in the z-direction; for such materials, (3) and (4) decouple, and (2) is recovered with E replaced by
E3I

o(wa)? = Es(ka)". 5)

In the theory leading to (3) and (4), it is assumed that the cylinder is homogeneous with respect to the
Cartesian form of Hooke’s law; we shall be interested in cylindrical anisotropy, which is natural when cylin-
drical polar coordinates are used.

Eq. (2) is known to be correct in the following sense. The exact equations for wave propagation in an
isotropic circular cylinder with a traction-free boundary can be solved exactly (using separation of variables
in cylindrical polar coordinates, Bessel functions, and so on), see, for example, (Achenbach, 1973, Section
6.9) or (Gralff, 1975, Section 8.2). The results show that an infinite number of different flexural modes exist.
The lowest mode has a long-wavelength behaviour that agrees precisely with (2): the dispersion relation for
the lowest mode can be written as wa = F(ka) with F(ka) ~ §(E/ 0)""*(ka)* as ka — 0. For more on the com-
parison between exact and beam theories, see (Achenbach, 1973, Section 6.11.3) and (Love, 1927, Section
202).

For axisymmetric motions of an isotropic rod, Bostrém (2000) developed the following method. Solve
the exact equations of motion for the displacement u(r,z) using power series in r, u(r,z) = > - " u,(z),
where r and z are cylindrical polar coordinates; this leads to a recursive structure in which u,, is determined
in terms of u,, and derivatives of u,,,, with m <n. The lowest-order non-trivial terms remain undetermined
until the lateral boundary condition is imposed. The exact boundary condition is written down; it involves a
power series in the cross-sectional radius, a, which is assumed to be small. Truncation of this series leads to
ordinary differential equations. Extension of this method to axisymmetric (non-cylindrical) bars and to
anisotropic media is described in (Martin, 2004).

How should the series arising from the lateral boundary condition be truncated? Bostrém (2000) gives
some discussion of this question; see also (Bostrom et al., 2001). However, the situation becomes more com-
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plicated for non-axisymmetric motions of anisotropic rods. Anisotropy leads to non-integer powers of r, so
that the method of Frobenius is needed: various solutions of the equations of motion can be constructed.
These solutions must be combined before the lateral boundary condition is imposed, as a consequence of
non-axisymmetry.

We resolve the truncation issue here as follows. Any truncation will lead to an approximate dispersion
relation. We ensure that this relation includes all terms that are O((ka)") as ka — 0, for 0 <n < N and a
certain prescribed N. Thus, in this way, we obtain a dispersion relation for long flexural waves in an aniso-
tropic rod. This relation reduces to (2) for isotropic rods. Extension to slender axisymmetric non-cylindrical
bars will be described elsewhere.

2. Governing equations

Consider a cylindrically anisotropic elastic rod of infinite length and cross-sectional radius a. We are
interested in the propagation of (long) flexural waves in such a rod. Let L be a typical axial wavelength;
we assume that

e=a/L < 1.
Let (r,0,z) be cylindrical polar coordinates that have been made dimensionless using L. Thus, the rod is

defined by 0 <r<eg, 0<0<2rmand —co0 <z < 0.
The governing equation of motion is

0, 0. . 0. , @
5(7,)+@t0+Kt0+V§tZ—QLFW7 (6)

where t. = (T, T0, 72) > €0 = (Tors To0s To:) > & = (Tor, o0, T22)

0 -1 0 U,
K=|1 0 0of, a=]u (7)
0 0 0 1,

is the displacement vector, ¢ is the density, and t;; are the stress components. In what follows, we use a gen-
eralization of the matrix formulation of Ting (1996) for static problems. From (Ting, 1996), we have the
following expressions for the traction vectors t; in terms of u:

t, = Q;ﬁ+lR<a%ﬁ+Kﬁ) +Pa%ﬁ,
tO:RT§~+;T<%ﬁ+Kﬁ)+s§ﬁ, (8)
t. = PTng—%ST(%ﬁJr Kﬁ) + M%ﬁ.
In these expressions,
Cu Cis Cis Cs Cn Cu

Q=|Cis Ce Css |, R=]Cs Cx Cu |,
Cis Css Css Css Cys  Cus
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Ces Cor Cuys Cis Cu Cpi
T=|Cx Cp»n Cyu |, P=]Css Cs Ci |,
Cs Co Cyu Css Cus Css
Css Cus Css Css Ca Css
M=|Cs Cu Cu |, S=]|Cs Cu Cxn|,
Cis Cyn Ci Cys Cy Cy

R" is the transpose of R, and we have used the contracted notation C,s for the elastic stiffnesses with
(1,2,3) = (,0,2).
We look for time-harmonic solutions of (6) in the form

u(r,0,z,t) = Re{u(r)e"’e=1, 9)

with similar expressions for t;. Here, i and j are non-interacting complex units, m is an integer,  is the ra-
dian frequency and ¢ is a dimensionless axial wavenumber. Use of ¢ rather than cos m#6 and sinm0 allows
us to retain matrix notation below; at the end of the calculation, we can take the real part with respect to j,
or the imaginary part. We find that u(r) solves

rQ(rd) + r(RK,, + K, RN +i&? (P + PT)u' — &*Mu +iér(P + K,,S + S'K,,)u
+ {Q(er)2| n K,,,TKm}u —0, (10)

where | is the identity and K,, = K + jml. From (8), we also have
t. = Qu' + 7 'RK,u + iéPu. (11)

For axisymmetric (m = 0) motions, we recover the equations studied in (Martin and Berger, 2003; Mar-
tin, 2004). For two-dimensional motions independent of z, we recover the equations studied in (Martin and
Berger, 2001). If we also put m = 0 and w = 0 (static), we obtain the equations solved by Ting (1996).

Setting u = (u,v,w)", (10) gives three coupled ordinary differential equations for the three components of
u. In general, these equations do not decouple.

The lateral boundary of the rod is free from tractions, whence

t,=0 onr=¢ —o00<z<o00. (12)

3. The method of Frobenius

To solve (10), we use the method of Frobenius. This method has been used by many authors; see, for
example, (Ohnabe and Nowinski, 1971; Chou and Achenbach, 1972; Markus and Mead, 1995; Yuan
and Hsieh, 1998; Martin and Berger, 2001; Shuvalov, 2003) and references therein. Thus, we write

u(r) =yl (). (13)
n=0
Substitution in (10) gives
0= PG i D AT, + 3Bl (14
n=0 n=1 n=2

where B = o(wL)l — &M,
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G"(2) = (n+ 2)’Q + (n + «)(RK,, + K,R") + K, TK,,
A"()=mn—-1+a)(P+P")+P+K,S+S'K,.
Notice that G™ (x) = G (n + o) and A" (a) = A" (n — 1 + ).
For (14) to be satisfied, we must first have
G (o) uy" () = 0. (16)

The terms with n =1 give

G (o) ul" (a) 4 €A™ (@) ul" (2) = 0. (17)
Subsequent terms give

G (@)u™ +iEA™ (o)u™, +Bu™, =0, n > 2. (18)
Eq. (16) has a non-trivial solution provided that

det G{"'(«) = 0. (19)

This equation, the indicial equation, determines o; in general, there are six solutions. For each allowable
o, (16) then determines the form of (the eigenvector) uy. We are usually interested in non-negative (real) o
because we want u(r) to be bounded at » = 0. Also, as in the static case (Ting, 1996; Tarn, 2002), values of o
with 0 <a <1 give rise to singular stresses at r = 0; this is a consequence of the cylindrical-anisotropy
model.

Once we have selected an allowable value for o, we can use (17) and (18) to determine uy,u,, ... in terms
of uy. Then, regardless of the choice of uy, the infinite series in (13) will give an exact solution of (10), assum-
ing that the series converges. We can do this for each allowable «; note that u, can be different for different
values of a: ug = ug(a). Then, we can form linear combinations of these solutions u (with respect to «). Fi-
nally, we can impose the lateral boundary condition (discussed next), in order to determine ug(a).

3.1. Lateral boundary condition

Substituting (13) in (11) gives rt,.(r) = 3. " **b" (x), where
by (2) = (2Q + RK,,)u"” (2), (20)

b (2) = {(n + 2)Q + RK,, }u (o) + icPu™ (2), n > 1. (21)

n

From the calculations above, we know (in principle, at least) how to express u™ in terms of u5m> with
0 < /<mn; doing this ensures that the governing equation of motion is satisfied. Then, using a weighted
sum over all allowable «, we write

u(r) =Y & ir"ﬂu;w(a). (22)

The factors of ¢ * here are algebraically convenient; note that the coefficients u) () could depend on &.
The lateral boundary condition (12) on r = ¢ gives

> f:g"b,gm)(a) =0. (23)
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Then, our strategy is to truncate (23) in order to satisfy the lateral boundary condition, approximately.
Our precise truncation strategy will be given later after we have discussed solutions of the indicial equation
(19).

At this point, we simplify the calculations by considering materials with cylindrical orthotropy. This is a
plausible model for wood, and includes isotropic materials as a special case. Calculations for axisymmetric
motions, for which m = 0, are made in (Martin, 2004); this is the simplest situation. Here, we assume that
m # 0, and are especially interested in flexural motions for which m = 1.

4. Cylindrical orthotropy

For materials with cylindrical orthotropy, there are nine non-trivial stiffnesses, namely Cyy, Cy5, Ci3, C,
Cs3, Ci3, Cy4, Css and Cgg. The matrices Q, R, T, P, M and S simplify to

Cll 0 0 0 C12 0
Q= 0 Ce O R=]GCs 0 O
0 0 Css 0 0 O
Cs(, 0 0 0 0 C13
0 0 Cu Css 0 0
Css 0 0 0 0 0
M = 0 Cyu4 O S=]10 0 Cx
0 0 Cs; 0 Cyq O

and the system (10) simplifies accordingly.

Isotropy is a special case of cylindrical orthotropy. For isotropic materials, C;; = Cy, = C33 = 1 + 2y,
Cip=Ci3=Cy3=1 and Cy = Cs5 = Cg6 = u, where 1 and u are the Lamé moduli. Exact solutions of
(10) are well known for isotropic solids; see, for example, (Achenbach, 1973, Section 6.9) or (Graff,
1975, Section 8.2).

Elementary calculations give

Gy G 0 0 0 4p
G (@)= Gy Gn 0 and A"(@)=[ 0 0 4y |, (24)
0 0 G33 A31 A32 0
where

G =o’Cy — Cy — m2C66, Gy = jm[a(C1y + Ces) — Cp — Cg),
Ga = jm[o(Cia + Ce) + Con + Ces), G = (o8 — 1)Ce6 — m*C,
Gy = 0 Css — m*Cyg,

Ay = (0 +1)Ci3 — Co3 +aCss, A3 = aCi3 + Coz + (o0 + 1)Css
and

Ay = A3y = jm(Ca3 + Cyy).
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For cylindrical orthotropy, we can simplify (19) using (24) to give
det G{" (0) = C%,(e*Css — m*Cag) Ag(;m) = 0, (25)

where Ag(oa;m) = oty + o2 {m*(c}, + 2c1n — c1c2) — 1 — &2} + (m* — 1)%ca, ¢1 = C11/Ces, 1o = C12/ Ce6 and
¢ = Cy/Css. The equation dg(o;m) =0 was investigated in (Martin and Berger, 2001, p. 1163). It is a
quadratic in o®. Hence, all six solutions of (25) can be found explicitly. We are interested in non-negative
(real) solutions because we want displacements that are bounded at r = 0.

5. Flexural vibrations of a rod

In the remainder of the paper, we consider flexural vibrations only, for which m = 1. Henceforth, we sup-
press the superscript (1)’ to simplify notation. Then, (25) has three non-negative solutions; they are o = 0,
o =& and o = & where & = (C44/Css)"* and

- 1/2
= {[Cuczz — CL 4 Ces(Cy — 2C15 + C22)]/(C11C66)} 2 (26)
(For isotropic solids, we obtain & = 1 and & = 2.) Thus, we have
det G()( ) C11C55C660( (!Z — 062)(&2 — &2)

Introduce the notation (b); for the ith component of the vector b, i = 1,2,3. Then, with u = (u,jo, w)T
(note the factor j, introduced for algebraic convenience), we obtain

(Go(o)u), = (2*Cyy — Cpp — Ceg)u — [0(C12 + Co5) — Cr2 — Ceglv,
Go(o)u), = j{[2(C12 + Ce6) + Ca + Ceslu + [(¢F — 1)Ces — Caav},
Go(a)u); = (o Css — Cag)w,

[(oe 4+ 1)Ci13 — Ca3 + aCss]w,
A (o)u), =j(C + Cag)w,
(A (a)u); = [0Ci3 + Caz + (0 + 1)Csslu — (Ca3 + Caa)v.

From (20) and (21), with u, = (14,,, jv,, w,) ", we obtain

bo(e2) = [(@Ci1 + Ci2)uo — Ci2v0,jCos{tto + (ot — 1)}, aCsswo]" (27)
and, forn > 1,
(bu()), = [(n+0)Ci1 + CroJuy — Crov, +iEC13wy-1, (28)
(by (o)), = jCoslun + (n+ o0 — 1)1, (29)
(b, ()3 = Css[(n + a)w, + i&u,_1]. (30)
Now, we shall truncate (23), arising from the lateral boundary condition, as follows:

> {bo(x) + &by (2) + &by (2) } + £'b3(0) + &by (0) = 0. (31)
=0

Thus, we include two more terms corresponding to « = 0 than those corresponding to « = & and o = 4.
This will ensure that we obtain a consistent approximation for long waves; see Appendix A. Evidently,
more terms could be included in (31) if desired, but at the expense of further calculations.

In Appendix B, we give detailed solutions for o« =0, « = & and « = &. Here, we summarise the results.
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5.1. Solution for oo =0

For o =0, (31) shows that we need u, for 0 < n < 4. Eq. (16) (with m =1 and o = 0) gives
Uy = (u(bquaO)Ta (32)

for some constant . Further calculation gives uj, uy, uz and uy in terms of uy. The corresponding tractions
are given by

by(0) = b, (0) =0,

by(0) = ug[€10(wL)’ — &, j{Gr0(wl)’ + E.4},0]", (33)
bs(0) = [0, 0,iE{%s0(wl)’ — &3}, (34)
(bs(0)), = uof@* (L)' A1 — o(wL)’E 7y + & 21}, (35)
(b4(0)), = juo{@* (L)' #> — 0(wL)’E 7, + &' 25} (36)

and (by(0)); = 0. All the constants appearing in (33)—(36) are defined in Appendix B. In particular, we note
that

€ + b = —1. (37)

5.2. Solution for o = a

This solution has a similar form to that obtained when o« = 0. We find that
uy = (Uyi, jio, 0)"

for some constant 9, where

Uy = [8(C1z + Ces) — Cap — Ces) /(37 C11 — Cxy — Cs). (38)
Further calculation gives u; and u,. The corresponding tractions are given by

bo(3) = Bol&, —jé, 0], (39)

b (&) = [0, 0,i673]', (40)

b2(3) = to[%10(wL)’ — €41, [{Ga0(wl)’ - E42},0]", (41)

where all the constants appearing here are defined in Appendix B.
5.3. Solution for o = a

In this case, we find that uy = (0,0, WO)T, where W, is a constant. After calculating u; and u,, we obtain
expressions for the corresponding tractions:

by (&) = W[0,0,5Css]", (42)
by (8) = W [iEZ), jiE2,, 0", (43)
b, (5) = [0, 0, Go(wL)* — E.4]", (44)
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where ./, 4, 7, and ¥, are defined in Appendix B. In particular, we have

,@1 + 92 = —&C55. (45)

5.4. Isotropic limit

The solutions obtained in Section 5.2 when « = & are well defined for isotropic media (for which a = 2).

Thus,
. A—pw  dv—1
o —

T3 t5u S—4

where v is Poisson’s ratio. Similarly,

- 4u = 2u(1+2v)

C="5"m T 5a

~ 2u(l+v) ~ 2u(2 —v)

Ay =T g, = e
T35 —4y) T 3(5—4)

- 1 — 6v+ 4v? - 12v—7 — 4

PTe(1—v)(5—4v) TP 6(1—v)(5—4v)’

However, those obtained in Section 5.1 (when o = 0) and in Section 5.3 (when o = &) are indeterminate.
To obtain the isotropic limit in these two cases, we begin by specialising to tetragonal materials, for which
C11 = Cy, Ci3= Cs; and Cyy = Css; see Appendix B. Then, for « = 0, we find that

J%:(gz:() and (51:—1, (46)

consistent with (37). For n =3, we find .75 = (3 + 2v)/4 and %5 = (1 4 v)/2. The formulas for n =4 can
then be obtained from (B.23)—(B.28).
Similarly, for isotropic materials (for which & = 1), we find that

Gy =—p, 9,=0, & =-51/8 and &= -3/8, (47)

consistent with (45).

6. Dispersion relation for rods

Having found solutions of the equation of motion, the next step is to apply the lateral boundary condi-
tion. We approximate this condition as (31); this vector equation has three components and we have three
unknown constants, namely, u,, 0y and wy. Explicitly, (31) gives

(bo(a)), + e(bi1(a)), + '92<b2(0)>1 + 82<b2(5‘)>1 + '94<b4(0)>1 =0,
{bo(2)); + (b1 (&), + & (b2(0)), + &*(b2(&)), + &* (b4(0)), = 0,
(bo(&))s + &(bi (@)); + & (ba(&)); + &' (b3(0)); = 0,

once vanishing contributions have been removed. Substituting the appropriate expressions for (b(«));, as
obtained in Section 5, we obtain

Z(up, B, o) " = 0, (48)
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where
le ﬁ(jgl +é}—K2¢S;/1 iK@l
Z= ZZI ﬁggz — (;@ — KZJT%Z iK@z 5
IK(ﬁ(gg — K2ﬂ3) 1K§/3 ﬁ(g + &C55 — KzézA/

Zn =P — >A + P A — PP I+ KL,
Zoy = BCr + KA + P H, — PP Iy + K L,

B = o(wa)®, a is the cross-sectional radius, and, in the notation of Achenbach (1973, Chapter 6), we have
e = ka = k, say; k is the axial wavenumber (so that the axial wavelength is 2n/k). For non-trivial solutions,
we require det Z = 0; this gives

Zu{(BEr — & — K2t2)(BE + 6Css — KA ) + K292 T3} — Zn{(B%) + 6 — K*41)(P% + 6Css — K>
+ Kfzo@]g_?,} + KZ(ﬁ(g3 — K2e52/3){91([3(7€2 — (ga — K2<S;/2) — 92([3@1 + %7 — KZJZN{O} =0, (49)
which involves « as k. Apart from f and «, all the other coefficients in (49) are material constants. Eq. (49)

is our main result: it is a dispersion relation governing the propagation of long flexural waves along a rod
made from an elastic material with cylindrical orthotropy.

6.1. Long-wavelength approximations

We anticipate that our model is appropriate for long waves. Thus, guided by (49), we put
B=1x"2+1*Q +O0(x°) asx— 0, (50)
and then determine €, and Q4. Using the general results from Appendix A, we have
det Z = K*%> + k* ¥4 + higher powers of x> (51)

In the notation of (A.1)-(A.5), we have A, = %12, — o/, Dy =6+ o, By=—Ey= —& and
10 = &C55, so that

%y = 6CssED, (52)

where we have used (37) and (A.6). As detZ = 0, we deduce from Z, = 0 that 2, = 0, as no other quantity
in (52) can vanish. Hence, (50) reduces to
B=x'Q+ 0" ask—0. (53)

This is consistent with the known exact result for isotropic rods, as given in (2); see (Achenbach, 1973, p.
248):
2 M(3A+2u) 6
= == 0 0. 54
b= oloa) = 0  O) as (54)

For Z,, we use ~(A.7). As 92 =0, we obtain Ay =—-Dy = —of, Ay =612+ £, Dy =€ + L,
Bz = —JZ/l, E2 = —&{2, ]2 = —JZ{, C1 = i@l, F1 = i@z, G3 = —i42{3 and H] = 193 HCI’ICC, using (37) and
(A.7), we obtain

P4 =4CssE(Qy — L — L) + A3E(D) + D) + A{aCss( A\ + oA5) — D3(9) + D)}
Then, from 2, = 0, we obtain

94231+$2+&73—(=§/1+£{2+93)&//& (55)
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after using (45). We conclude that the long-wave form of the dispersion relation is o(wa)? = Qu(ka)*, where
Q4 is defined by (55).
Let us give 4 more explicitly. Using (B.25), (B.28), (B.21) and (B.22), we obtain

AL+ L) = [ + gy +4C13Us = —UsCss — V2Cas — Us(Cas + 3Css),
for the second equality, we used (B.17) and (B.18). Hence, (B.15) and (B.14) give

4L+ Ly + 3) =3UsCss — VyCus + Us(9Css — Cas) = —U»(2C13 + Co3) + V2Ca3 + Cas, (56)
where U, and ¥, are given by (B.10) and (B.11), respectively. Thus,

(L1 + Lo+ o3) = —|C3| + Ce6{C33(3C11 + 2C12 — Cx2) — (C15 + C3)(3C13 — C3) }, (57)
where 4, is defined by (B.7) and

Cu Cn Ci
| C3 |: det C]2 sz C23 . (58)
Cl3 C23 C33

Using (B.33), (B.34), (B.37) and (B.38), explicit calculation gives
(34 2) (A1 +.42) = —Cau(1 + W) — CssUy — (& + 1)Css W1,
where U, and W, are given by (38) and (B.31), respectively. Then, (B.36) gives
(3 +2) (A + A2+ D3) = @+ 1)Css[Ug + (& + 1)W,] — Caa(1 + W) = Ca3(1 — Uy) — aC13U.
The other terms in (55), namely .=/ and &, are given by (B.12), (B.35) and (B.39). Thus, we obtain

C23(&C11 - C12 - C66) - CIS{&(CIZ + C66) - C22 - Cé()}

A1+ s+ D) E = ~ a(1 — o
(1 + 2+ 23)/ (3+2)Ces{Cn — Cro + &1 — 3)C11}

(59)

Summarising, the long-wave form of the dispersion relation is o(wa)* = Q4(ka)*, where Q, is defined by
(55), (57) and (59). These formulas hold for cylindrically orthotropic materials. For such materials, we note
that the compliance s33 is given by

533 = |C3]/(C1iCxn — C1),

where |C;| is defined by (58) (and it occurs in (57)).
Now, let us specialise to tetragonal solids, defined by (B.44). Then, (46) gives .7 = 0, and (B.46) gives U,
and V5. Then, from (55) and (56), we obtain
1

1 I
Q4 = ZC33 —§C%3/(C11 +Cpn) = ZS331 =

! E

Z 3

where E; is Young’s modulus in the z-direction. Hence, we recover (5). Finally, specialising further to
isotropic solids, we recover the well-known result (54). If one looks at the long-wavelength form of the
solutions to (48), supposing that uy= O(1) as k — 0, one finds that W, = O(x*), Ty = O(x?) if o/ # 0,
and 0y = O(k*) if .o/ = 0 (which includes isotropy). Thus, u, gives the main contribution. As vy = jug
(see (32)), we see that the main effect is uniform displacement in the x-direction (real part with respect
to j) or in the y-direction (imaginary part with respect to j): this is what one expects for simple flexural
motions.
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7. Conclusions

We have described a systematic procedure for solving the problem of wave propagation in a rod of cir-
cular cross-section. The rod is made from an elastic solid with cylindrical anisotropy. Detailed results were
given for flexural motion and cylindrical orthotropy (nine elastic stiffnesses).

The theory employs power series in r. Note that we do not limit ourselves to polynomials in 7, and so we
are not limited, in principle, to very long waves. Nevertheless, it turns out that the low-order truncations
obtained work best for longer waves. In fact, the equation of motion is satisfied exactly but the lateral
boundary condition is satisfied approximately because the relevant power series are truncated. The main
issue is how to truncate properly: we propose to truncate so that all terms up to a certain power of ka
are included, and this ensures that we obtain the correct long-wave behaviour. The same truncation strategy
can be used for other problems involving non-cylindrical but axisymmetric, anisotropic bars. Moreover, as
in (Bostréom, 2000), we could attain improved accuracy by retaining more terms in the truncation, but this
would only be practicable by using software for symbolic manipulation.

Appendix A. Expanding a determinant

In general, for a matrix

A4 B C
z=|p E F|, (A.1)
G H I

we have detZ = A(EI — FH) — B(DI — FG) + C(DH — EG). Suppose now that 4, B, ..., I are functions of a
small parameter x, and we want to estimate detZ for small k. Specifically, suppose that

A = Ayi* + Agc* + O(k®), B = By + By + O(x*), (A.2)

C=Cix+0(K’), D=Dy*+ Dy + O(x), (A.3)

E=Ey+Ex’* +0(x'), F=Fx+0(), (A.4)

G= Gk’ +0(x°), H=Hrx+O0K), I=I)+Lx+O0(x* (A.5)
as ik — 0. Then, we find that detZ is given by (51), where

Z 5 = (A2Eq — BoD»)I, (A.6)

EZ4 = (A4E0 7BOD4)IO +AZ(E‘OIZ +E2[0 7F1H1) *DZ(BOIZ +le() — C]H]) + G3(B()F1 — C]Eo).
(A7)

Notice that all terms given in (A.2)—(A.5) are needed (and no others) if one wants complete expressions
for &, and Z,4. This observation motivates the truncation (31).

Appendix B. Frobenius solutions

Solution for o« = 0. Eq. (16) (with m =1 and « = 0) becomes
c je 0 U 0

—jc ¢ 0 joo | =10

0 0 Cyu Wo 0

)
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where ¢ = Cyy + Cg6. As ¢ # 0 and Cyy # 0, we obtain

U = (u07ju070)T7 (Bl)

for some constant uy, whence (27) gives by(0) = 0.
Next, writing u; = (ul,jvl,wl)T, (17) (with m =1 and o = 0) reduces to

(' Cii — Cn —Ces j(Clz—C22)><fll > _ (0) (B2)
J(Cra + Cypp + 2C¢) —Cn 1 0
and

(Cyq — Css)(wy +1&up) = 0, (B.3)
where we have used (B.1). The determinant of the 2 x 2 system (B.2) is

CiCes(1 — &) = CT, — C11Cx + Ce(2C12 — Cna), (B.4)

we assume that & # 1 whence u; = v; = 0. (For isotropic solids, (B.4) reduces to —3u(A + 2u) # 0.) Then,
(28)—(30) give
b (0) = [0,0, Css(wy + icup)]". (B.5)

The conclusion drawn from (B.3) depends on Cyy and Css: if Cyqy # Css, we obtain w; = —iuy and
b;(0) = 0, whereas if C44 = Css (as for isotropic solids), w; remains undetermined.
The next step is to consider (18) with n =2, m =1 and o = 0. Writing u, = (u», jvs, wz)T, we obtain

( 4C; — Cn —Ces  j(2C1n —Cn+ C66)) (uz > B <f2) (B.6)
J(2C12 4 Cy + 3Ces) 3Ce — Ca ju o3 .

and (Cy4 — 4Css)w, = 0; we assume that this last equation gives w, = 0. In (B.6), the vector on the right-
hand side has components

fo = —1E(2C13 — Ca3 4 Css)wi + ECssup — o(wL) up,
g2 = J{—lé(CB + C44)W1 + 52C44u0 — Q((L)L)zuo}.

Also, the determinant of the 2 x 2 system (B.6) is

4C1 Ce(4 — &%) = 4{C}, — C11Ca + Css(3C11 +2C1, — Cn)} = 4, (B.7)
say, which vanishes when o = 2. This exceptional case includes isotropy. From (28)—-(30), we obtain
b>(0) = [(2C11 + Ci2)us — Crav2 +1EC 13wy, jCos (U2 + 12), O]T- (B.8)

Now, consider the generic situation in which Cyy # Css and 4, # 0. (This excludes isotropy, which we
shall return to later; in fact, we will obtain results for isotropic media by a limiting procedure.) From (B.3),
we obtain w; = —iéu,, whence f; = —{E¥2Cy5 — Cy) + Q(a)L)Z}uO, & =— j{ECx+ Q(a)L)Z}uO and, from
(B.5), by(0) =0. Then, as 4, # 0, (B.6) determines u, and v, in terms of u,. Explicitly,

uy = {X20(wL)’ — EUstuy and vy = {Yr0(wL)’ — &V, }uy, (B.9)
where
AUy = 2{C13C23 — C13Cxn + Ces(3C13 — Cn3) },

(B.10)
A,X, =2(Cxn — Cip — 2Ces),
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A,V5 = 2{C2Cy3 — C13Cx + 2(C11C3 — C12C13) — Ces(3C13 — C3) },
4,Y, =2(Ciy + Co — 2Cy; + 2Ces).
From (B.8), we find that b,(0) is given by (33), where

(B.11)

Ayt =4Ce{(C13 — Cx3)C12 + C13Cn — C11Ca3},
A, = 4{C,Cypy — C}, — 2Ces(Cy1 + Ci2)}, (B.12)
4,6, = 4Ce6(Can — Cn1).

Explicit calculation, using (26) and (B.7), gives (37).
Continuing with n = 3, we find that uz = (0,0, w3)T, where

w3 = lf{XzQ((DL)z — 62U3}u0, (B13)

(9Css — Cag)X3 =1~ (2C13 + Cp3 + 3Cs5) X5 + (Coz + Cag) Y, (B.14)

(9Css — Cas)Us = C33 — (2C13 4 Cp3 + 3Cs5) Uz + (Caz + Caa) V. .
Hence, b5(0) is given by (34), where

€ :C55(3X3 +X2) and .o/; :C55(3U3+U2). (BIS)
For n =4, we obtain uy = (u4,]v4, ())T, where

< 16C; — Cn — Cqs j(4C1n — Cn + 3C66)> <M4 > B <f4> (B.16)

J(4C12 + Cy + 5C) 15Css — Ca Jus g/ .

fo =AD" = o(@L)Ef7 + &£ Yu,

g =i{0*(wL)'e)) — o(wL)*E¢ + &g Yu,

f4(]> = _X27

f4(2> = —X,Css — Uy — X3(4C13 — Cp3 + 3Css), (B.17)

f4(3> = —U,Css — U3(4Cy3 — Cy3 + 3Css),

gz(tl) = -1,

giz) = —Y,C4 — V), — X3(Coz + Cus), (B.18)

g = —V2Cu — Us(Cos + Cua).
Hence, we can write

s = {@* (L)' X} — o(wL)EX Y + & X Yu, (B.19)

vy = {*(wL)' Y} — (L&Y + &Y Yuo, (B.20)

where X ff) and Y, ff) (¢ =1,2,3) solve separate systems,

(16C11 —Cxn — Cg Cy —4Cyp — 3C66) XY) B ‘]64(5)
4C15 + Cy + 5Ces 15Cg6 — Ca» Y - g )
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Thus,
A4X‘(‘/) = (15C¢ — sz)ff) +(4C1, — Cn + 3C66)gff)a (B.21)
AY) = —(4C1a + Cop 4 5Ce6) £ + (16C1y — Cx — Ces)gly, (B.22)

where A4 = 16{C$2 — C11C22 + C66(15C11 + 2C12 — sz)} and ¢ = 1,2,3.
The corresponding tractions are given by (35) and (36) and (b4(0)); = 0, where

Hy = (4Cy + C)xY — CpYy), (B.23)
Sy = (4Cy + C)X{ — CoY ) + CiaXs, (B.24)
P =(4C + CIZ)X513> - Clef) + C13Us, (B.25)
Hoy = Cﬁs{Xil) + 3Y5¢1)}, (B.26)
Iy = CeslXy +377), (B.27)
Py = Ceef XY +37P) (B.28)

Summary for o= 0.
u = (uo,jvo,O)T with vy = uy,
u = (O,O,Wl)T with  w; = —iu,
w, = (u2,jv2,0)"  with u, and v, given(uniquely) by (B.9),
u; = (0,0,w3)T with ws given by (B.13),
w = (us4,jvg,0)"  with uy and v, given by (B.19) and (B.20).

Also, by(0) =b;(0) = 0, and b,(0), b3(0) and by(0) are given by (33)—(36) in terms of the single unknown
constant uy.

Solution for o = a. Writing uy = (i, jﬁo,fvo)T, we find that wy = 0 and that #, and v, are related by
(Go(a)uo); = 0 (or (Go(a)ug), = 0):

i — O (B.29)

with U, given by (38). Writing u; = (it;, jiy,w;)', we find that i = d; =0, whereas the equation
(Go(a+ uy +iEA;(a)ug); = 0 gives

Wy = iEW T, (B.30)
where

[Cas — (& + 1)°Css] W1 = [6C13 4 Cas + (& + 1)Css]Uy — Ca3 — Caa. (B.31)

Then, writing u, = (i, jUa, sz)T, we find that w, = 0, whereas u, and v, solve a 2 X 2 system,

[(&+ 2)2C11 — Cy — Ceglity — [(2 4 2)(C12 + Ces) — Cay — Ces]02 :]27

[(3 +2)(C1z + Cos) + Car + Coglit + {[(3 +2)* — 1]Cs6 — Caa}ir = &3,
where

[y ==(3+2)Cis = Cos + (& + 1)Css]i&ivy + & Cssitg — 0(L) ity = {EF> — o(wL)* Uo}i,
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&y = —(Co3 + Cag)i&y + ECatty — (L) Ty = {€G> — o(wL)’}io,
FZ = [(5( + Z)Cl'; — C23 + (a( + 1)C55]W1 + CSSUQ,

G, = (Cas + C44)V~V1 + Cy.

The determinant of the system for i, and v, is 4C1Ces(a + 1)(& + 2)2 = A, say, which does not vanish.

Hence, solving for i, and ,, we obtain
ity = {X20(wL)’ — EUs}0 and ¥ = {Vr0(wl)’ — &V }io,

where

(B.32)

405 = (6 + 2)W{C13Cx — C12Cas + (24 1)Ces[Ca3 — (3 + 3)Cs]} + (1 + W1)Caa{Cr — (&4 2)Ch2

— (@4 1)Ces} + [Up + (a4 1)W,]Css{Cx — (& + 1)(& + 3)Ces},

MVsy = (& + 2)W1{C13C22 — CnCxs + (04 2)(C12C13 — C11Ca3) + Cel(a + 3)Ci3 — Ca3l}

+ (1 4+ W,)Cay{Cxn — (& + 2)2C11 + Ces} + [Uo + (& + 1)W1]Css{(a + 2)C1»
+ Co + (& + 3)Ces},

A X5 = (1+ Up)Cxp — (6 +2)Cia — (3 + 1)[(2+ 3)Up + 1]Ces,
A:Y 5 = (1+ Ug)Co + (8 +2)UgCra — (8 + 2)°Cry + [(& + 3)Up + 1]Ces.
The corresponding tractions are given by
by (%) = [(&Cyy + Cra)itg — Crato, jCos{ito + (& — 1)}, 0]" = [&170,j6280,0]",
by (%) = [0,0, (5 4 1)Csswy + iECssitg] " = [0,0,iE D37,
(b2(2)), = [(&+2)C11 + Crality — Cia0y +1EC 13w, = {%10(wL)* — &4\ Yy,
(ba(8)), = jCoslita + (& + 1)8a] = [{Ba0(wl)’ — .42}
and (by(a)); = 0, where
&1 =aUoCyi + (Uy— 1)Crs, &> = (& — 1+ Uy)Ces,
D3 ={Uo + (& + 1)} Css,
Ay =[(&+2)Cp + Cio]U, — CaVar + Ci3y,
€ = [(2+2)C1 + CplX, — CppY,,
oty = Ces|Us + (2 + 1)V3],
%, = Ces[Xo+ (@4 1)7)].

Direct calculation, using (26) and (38), shows that &, 4+ &, = 0, so that we can write

gal g) and gazz—g.

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)

(B.39)
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Summary for o = a.
uy = (i, joo, O)T with ity and 9y related by (B.29),
u; = (0,0,w,)"  with w, given by (B.30),
w, = (it2,ji»,0)"  with @, and 7, given uniquely by (B.32).

We also found expressions for by(&), by (&) and by(&); they are given by (39)—(41), in terms of the single
unknown constant 7.

Solution for o = &. Writing uy = (i1g, joo, WO)T, we find that &y = 9y = 0. Next, writing u; = (i ,jﬁ],ﬁzl)T,
(17) (with m =1 and o« = &) gives w; = 0 and

(84 1)°Cyy — Cys — Ceo)]its — [(&+ 1)C1a — Co + 6Ce6)y = f1, (B.40)

[(&+ 1)(Cia+ Co) + Ca + Ceglity + [a(& + 2)Cgs — Ca]iy (B.41)

= gla
where fi = —i¢[(& + 1)Ci3 — Cas + 8Css|wy and g, = —1&(Ca3 + Cag ). The determinant of the 2 x 2 system
(B.40) and (B.41) is

CiiCes(a+ D) {(a+1)7 =&} = (a+ 14,

say; this vanishes when & = & — 1, as for isotropic solids. Assuming that A, # 0, we can solve (B.40) and
(B.41) uniquely for &; and ; in terms of wy. Explicitly, we obtain

fll = lfUlvAV() and @1 = iéVlllAV(), (B42)

AU = —0Ce6[(0 4 2)Ci3 — Co3 + 28Css] + 0Css5(Cxn — 0C12) + C13C — C12Cos,

MV = Ces[( +2)C13 — Ca3 + 26Css] + &Css[Cra + Cop — (3 + 1)Ciy] + (8 + 1)(C12Ci3 — C11Cas3)
+ C13Cn — C2Cas.
Next, writing u, = (itz,ji)z,wz)T, we obtain i, = 0, = 0 and
4(8+ 1)Cssivy = —i&[(8+ 1)C13 + Cos + (8 + 2)Csslity +iE(Cas + Caa)iy + E Cyivg — o(wL) g
= —{o(@L)’ + EW, i, (B.43)

where Wz = —U1 [(& + 1)C13 + C23 + (5( + 2)C55] + Vl(C23 + C44) — C33.
The corresponding tractions are given by

bo(&) = [0,0, 4Css7g] ",
(bi(8)), = [(6+ 1)C1 + Cuality — Ciaby +iEC3v = iED b,
(b (8)), = jCesit1 + bb1) = ji¢ P,
(b (&) = (8 4 2)CssWy +1ECssiy = {Go(wL)* — E.of iy,
and (b;(a)); = (b2()), = (b2(&)), = 0, where

9, = [(a+1)Cpy + Cpu]U, — CuV'y + Cis,

Dy = Ces(U, +a7),

7 =[G+ 2)/G+ DI+ CsUy,
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Explicit calculations reveal that 9, and 9, are related by (45).
Summary for o = a.

Uy = (0707WO)T5
u = (fl17jf2170)T with #; and #; given uniquely by (B.42),
u, = (0,0,7,)"  with W, given by (B.43).

We also found expressions for by(&), by (&) and by(&); they are given by (42)—(44) in terms of the single
unknown constant wy.

Tetragonal materials. The formulas given above for o =0 and for « = & are degenerate for isotropic
materials. However, the relevant formulas are easily obtained by first specialising to tetragonal materials,
for which

Cii=Cyp, Ci3=Cp and Cy=Css, (B.44)
see (Ting, 1996, p. 46). Formulas for isotropy and for transverse isotropy are then obtained by simple sub-
stitution. Note that the formulas for o = & are not degenerate.

Beginning with o = 0, we make use of (B.44) and find that

A =4(Cii + C12)(Cra +2Cg6 — Ci1), (B.45)
1
Ur=—V2=35Cu/(Cui+ Cua), (B.46)
1
Xo=-Yr= _5/(C11 + Ch).

Also, in (33), we obtain (46). Then, for n = 3, we find

_ C33(Ci1 + Ci2) — 2C13(Ch3 + Css)

vs 8Css(Cni + Ci2) ’
X; = Cii+ Ci+2(Ci3 + Css)
8Css(Ci1 + Ci2) '
ol = 3C33(Ciy + Cia) — 2C13(3C13 + Css)
8(Cii +Cn2) ’
& = 3(Cii + Cip +2C13) + 2Css
8(Cn + Ci2)

The formulas for n =4 can then be obtained by evaluating (B.23)-(B.28).
Similarly, for « = &, we find that 4, = 2(Cy; 4+ C12)(C12 + 2Ces — C11),

1
U =-V= _E(CB + Css)/(Cii + Cra),
Ql:_cﬁy 92:07 (%:_3/87
o 2(Ci3 4 Cs5)(3C13 4+ Css) — 3C33(Cyy + Chp)
8(C11 + Cr2)

The formulas for &, and %, are consistent with (49).
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